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We consider a self-similar problem of propagation of shock waves in a gravita- 
tional field, taking into account the variation of energy with time. The flow is 

caused by expansion of a spherical piston and the shock waves propagate with 
constarit velocity. For the motions of such a type the velocity, pressure and den- 
sity can all be expressed as functions of a single, dimensionless parameter. It is 

established that the energy varies with the Mach number. 

Propagation of shock waves during an explosion in a gaseous medium in the 
presence of gravitational and nongravitational fields was studied by a number 
of workers. Sedov in [l] studied in detail a self-similar motion of the first kind 

(according to the classification given in [2]). The similarity index was deter- 
mined either from the dimensionality concepts, or from the conservation laws. 

A self-similar problem of motion in a homogeneous medium in a nongravita- 
tional field generated by expansion of a plane, spherical or cylindrical surface, 
was studied by Rogers [3] for the case when the perturbed region was bounded by 

a strong shock wave. In the perturbed region the total energy increases with time 
according to the power law. 

Below we investigate a self-similar motion in which the total energy grows 
proportionally to time, in an isothermal gaseous medium, in a gravitational field 

behind a spherical shock wave moving at a constant speed CO.; The position of 
the inner flow boundary represented by an expanding surface, is determined by 
numerical integration of a system of equations for the Mach numbers equal to 
1.6 and 1/x 

1. Bqurtionr of motion rnd their solution, Using the spherical polar 
coordinates r, 8, cp, and placing the origin at the center of an expanding spherical pis- 
ton, we can write the equations of motion and continuity in the gravitational field, in 
the form (utilizing the property of spherical symmetry) 

(1.1) 

Here v, p and p are the velocity, pressure and density of the medium at the distance r 
from the coordinate origin, G is the gravitational constant and p is the mass of the 
medium contained in the sphere of radius ‘r. In the unperturbed medium the correspon- 
ding values of velocity, density, pressure and mass are given by 
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v1= 0, P1=$ 2nAfG 
PI= (a - 1) (3 _ 0) r,:-, (f.2) 

4nA 
p1= 3-_0 rSTU (I< co < 3, A = const) 

At the surface of the shock wave propagating through gas at rest the following conditions 
must hold : 

‘.z&co”:“I P?=+$++& -l ) 
(1.3) 

,,_-&+ i--T&Y-q , Pz=lh 
( ) ( 

TP1 
q=s=&J 

Here the constant speed c,, of the shock wave is connected with its radius rz (i) by the 
relation r, (t) = cot. 

The problem considered here is self-similar n] only when o = 2, i. e. when the me- 
dium is isothermal. In this case the self-similar variable and the parameters of the gas 
flow can be written in the form 

h = rlcOt = r I r,, v=cof(% P=Pzg(V 

~=p~h(V, Ir= be@) 

1 

d 2co d 
dt 111 p2 = - -c = dt In pa 

) 
(i .4) 

Inserting (1.4) into (1.1) and taking into account the relation given above in the paren- 
theses, we have 

df CLI dh 2qe 
(f--)dh+gdh+yha=O (1.5) 

d df 2f 
(f--)&ng+dh+h=2 (1.6) 

where 

(f - k) g $ - yh (f - h) $ + 2gh (r - 1) = 0 (1.7) 

(1.8) 

Further we write the condition of conservation of mass in a different form: dp / dt = 0 

and we substitute into it (1.4). Eliminating de / dh from the resulting expression and 

(1. 8), we obtain uar 
e = z hag (h - f) (1.9) 

which on substitution into (1.5) yields 

(f -- h) g + CL1 p $ - aa (f - h) = 0 (1.10) 

The conditions (1.3) at the surface of the shock wave on transforming into the dimen- 

sionless form and using (1.4), yield 

f(I)=&-q), g(l)=1 (i.ll) 

h (1) = 1, e (1) = 1 

Regarding now (1.6) (1.7) and (1.10) as a system of algebraic equations in df / dh, 
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dg 1 dh and dh’l dh , we solve it to obtain 

df 2% (Tf / a - 1) + craga (f - a)2 --- 
dh - (f - h)P g - ccl@ 

dg 

dh=- h(L) 
2acr - 1) Ah+ crzha~(f---)+ 2,a(f -?$ 

(f - hF 0” - alrh 
dh -- dh - -- g 

k (f - h) (2Tflh - 2 + rarg) 
(f - b)2 g - ccl@ 
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(1 .i2) 

Numerical solution of the system (1.12) of nonlinear first order differential equations 
was carried out with the boundary conditions (I. 11) when y = V/S , for two cases, M = 

I. 6 and M = Jflir: The surface of the shock wave at which h = 1 was used as the start- 
ing point for the computation and the Runge-Kutta method was used, followed by that 
of Mime. The computation was terminated near the value of h = h, at which f (h) be- 

came equal to h, since dgi dh is infinite at b = h,,. The numerical values of f, g, h 
and e as functions of h are given in Table 1 for M = 1.6 and in Table 2 for M = v 10. 

2, Dl8cu#:ion of rsrult:. The data given in Tables 1 and 2 show that f, g 
and h increase with decreasing h and, when h --, A,,, the function h tends to a finite 
value which is different for different Mach numbers. We note that the density increases 
faster than velocity, the mass decreases at a greater rate than the Mach number increases 
and tends to zero as h --, h,. From this it follows that h = he represents the inner bound- 
ary of the perturbed motion. We also see that h, increases with increasing Mach num- 

ber. 

Comparison of the above results with those obtained from a selfcsimilar motion 
(w = 2.5) in the presence of a strong explosion investigated by Sedov in [ 11. shows an 
agreement between the distributions of the density, mass and pressure, but not of the 
velocity. 

The total energy of the unperturbed medium in a region bounded by the surface of 
the shock wave at the instant t and the total energy of the perturbed medium bounded 

from the outside by a spherical shock wave of radius rz (t) and from the inside by a 
spherical piston of radius r* (t) = &rz (t), are given by 

) 
4nr2dr = 

8x‘JA% (3 - 2y) ra (t) 

r--1 
0 

~~=~~~+~-~~4~r2dr 

(2.1) 

(2.2) 

Substituting the values of v, p, p and u into (2.2) and passing to the dimensionless 

variable h, we have in accordance with (1.4), 

E, = 4n2A2Gr2(11 -j- Ia - I,) (2.3) 

It Can be shown that g (h) - (f - i)“i* and by (1. g), when y = 6i8, e (A) y (f - A)‘:* 
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Table 1 

f.104 

4570 
4618 

i% 
4781 

ffit 
4978 
5052 
5131 
5214 
5302 
5396 

E! 
5717 
5839 
5970 
6113 

E%~ 

M = 1.6 

g 

1.0000 
1.0509 
1.1062 
1.1670 
1.2339 
1.3081 
1.3907 
1.4834 
1.5883 

:~~~~ 
210082 
2.2017 
2.4384 
2.7379 
3.1360 
3.7085 
4.6563 
6.7815 

$E~ 

h e.10” 

1.0000 10000 
1.0326 9633 
1.0670 9259 
1.1034 8881 
1.1420 8499 
1.1827 8112 
1.2259 7718 
1.2715 7318 
i.3198 6909 
1.3708 6492 
1.4247 6063 
1.4816 5620 
1.5417 5161 
1.6049 4682 
1.6712 4175 
1.7404 3632 
1.8122 3035 
1.8855 2352 
1.9576 1470 
1.9903 0861 
2.0058 0200 

Table 2 

I 
M=?~ 

). ,109 

I Ifi f.iO' h e.104 

100 I 6750 1.0000 
98 6821 1.0652 
96 
94 

lit 
88 
86 
84 
82 
80 

787Z6 

6898 
I 

1.1406 
6982 1.2294 
7073 1.3359 
7171 I 1.4673 
7277 1.6355 
7391 I:8630 
7515 2.1996 
7649 2.7984 
7794 4.4714 

7872 7883 ~~:~~ 

~.~ 
1:0405 
1.0622 
1.0848 
1.1082 
1.1320 
1.1562 
1.1801 
1.2031 
1.2237 
1.2316 
1.2324 

10000 
9378 
8740 

%i 
6688 
5934 
5123 
4225 
3189 
1810 

% 
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near the spherical piston. Consequently, the last two integrals in (2.3) converge. Sub- 
stituting gh* from (1.8) into the first integral of (2.3) and integrating by parts we find, 
that I, also converges. The integrals in (2.3) were computed by the Simpson method, 
using the value, h, = 0.6240 for the moderately strong shock wave and h, = 0.7886 for 
the strong shock wave. As a result, the following energy difference was determined : 

-& - El = C.4n=AaGr2, 

In both cases the rate of change of the energy difference is equal to the work done by 

the spherical piston given by the formula 

w = 4np,r,2dr, / dt = 4np& (A,,) r,2h~sc~ 

In conclusion we note the following. If the self-similar motion considered here is 

caused by the release of energy at the instant t = 0, then for o = 2, i.e. for an isother- 

mal medium, the law of energy release discussed by Sedov in [l] assumes the form of 
a relation proportional to time. Kopal [4] obtained a numerical solution of an analogous 
problem for a gaseous medium in which the density varied as r-O. He assumed that the 
total energy of the perturbed medium bounded by a spherical shock wave is equal to the 
total energy of an unperturbed medium bounded by a shock wave in the same position 
at an arbitrary instant, i. e. he neglected the energy of explosion. As the result, Kopal 
established a relationship connecting the Mach number M with o and used it to deduce 
that M = 1.6 for o = 2. However, our computation given above shows that at 1M = 1.6 
the energy difference has a finite value and is not equal to zero as was asserted by Ko- 

pal. 
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